GooseFEM 1.4.1.dev2+g78f16df
|
CRTP base class for a partitioned matrix with tying. More...
#include <GooseFEM/MatrixDiagonal.h>
Public Types | |
using | derived_type = D |
Underlying type. | |
Public Member Functions | |
array_type::tensor< double, 2 > | Solve (const array_type::tensor< double, 2 > &b) |
Solve \( x = A^{-1} b \). | |
array_type::tensor< double, 1 > | Solve (const array_type::tensor< double, 1 > &b) |
Solve \( x = A^{-1} b \). | |
void | solve (const array_type::tensor< double, 2 > &b, array_type::tensor< double, 2 > &x) |
Solve \( x = A^{-1} b \). | |
void | solve (const array_type::tensor< double, 1 > &b, array_type::tensor< double, 1 > &x) |
Solve \( x = A^{-1} b \). | |
CRTP base class for a partitioned matrix with tying.
Definition at line 22 of file MatrixDiagonal.h.
Underlying type.
Definition at line 27 of file MatrixDiagonal.h.
|
inline |
Solve \( x = A^{-1} b \).
For GooseFEM::MatrixDiagonalPartitioned under the hood solved \( x_u = A_{uu}^{-1} (b_u - A_{up} * x_p) \equiv A_{uu}^{-1} b_u \). Use GooseFEM::MatrixDiagonalPartitioned::Reaction() to get reaction forces.
b | dofval [ndof]. |
Definition at line 70 of file MatrixDiagonal.h.
|
inline |
Solve \( x = A^{-1} b \).
For GooseFEM::MatrixDiagonalPartitioned under the hood solved \( x_u = A_{uu}^{-1} (b_u - A_{up} * x_p) \equiv A_{uu}^{-1} b_u \). Use GooseFEM::MatrixDiagonalPartitioned::Reaction() to get reaction forces.
b | nodevec [nelem, ndim]. |
x | (overwritten) nodevec [nelem, ndim]. |
Definition at line 102 of file MatrixDiagonal.h.
|
inline |
Solve \( x = A^{-1} b \).
Note that this does not involve a conversion to DOFs.
In case of GooseFEM::MatrixDiagonalPartitioned under the hood, schematically: \( x_u = A_{uu}^{-1} (b_u - A_{up} * x_p) \equiv A_{uu}^{-1} b_u \) (again, no conversion to DOFs is needed). Use GooseFEM::MatrixDiagonalPartitioned::Reaction() to get reaction forces.
b | nodevec [nelem, ndim]. |
Definition at line 53 of file MatrixDiagonal.h.
|
inline |
Solve \( x = A^{-1} b \).
For GooseFEM::MatrixDiagonalPartitioned under the hood solved \( x_u = A_{uu}^{-1} (b_u - A_{up} * x_p) \equiv A_{uu}^{-1} b_u \). Use GooseFEM::MatrixDiagonalPartitioned::Reaction() to get reaction forces.
b | nodevec [nelem, ndim]. |
x | (overwritten) nodevec [nelem, ndim]. |
Definition at line 87 of file MatrixDiagonal.h.