GooseFEM 1.4.1.dev2+g78f16df
|
Solve \( x_u = A_{uu}^{-1} (b_u - A_{up} * x_p) \) for A
of the MatrixPartitioned() class.
More...
#include <GooseFEM/MatrixPartitioned.h>
Public Member Functions | |
template<class M > | |
array_type::tensor< double, 1 > | Solve_u (M &A, const array_type::tensor< double, 1 > &b_u, const array_type::tensor< double, 1 > &x_p) |
Solve \( x = A^{-1} b \). | |
template<class M > | |
void | solve_u (M &A, const array_type::tensor< double, 1 > &b_u, const array_type::tensor< double, 1 > &x_p, array_type::tensor< double, 1 > &x_u) |
Same as Solve \( x = A^{-1} b \). | |
Solve \( x_u = A_{uu}^{-1} (b_u - A_{up} * x_p) \) for A
of the MatrixPartitioned() class.
You can solve for multiple right-hand-sides using one factorisation.
For "nodevec" input x
is used to read \( x_p \), while \( x_u \) is written. See MatrixPartitioned::Reaction() to get \( b_p \).
Definition at line 526 of file MatrixPartitioned.h.
|
inline |
Solve \( x = A^{-1} b \).
A | GooseFEM (sparse) matrix, see e.g. GooseFEM::MatrixPartitioned(). |
b_u | unknown dofval [nnu]. |
x_p | prescribed dofval [nnp] |
Definition at line 545 of file MatrixPartitioned.h.
|
inline |
Same as Solve \( x = A^{-1} b \).
A | GooseFEM (sparse) matrix, see e.g. GooseFEM::MatrixPartitioned(). |
b_u | unknown dofval [nnu]. |
x_p | prescribed dofval [nnp] |
x_u | (overwritten) unknown dofval [nnu]. |
Definition at line 568 of file MatrixPartitioned.h.